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Abstract. In this paper I discuss how to separate variables in path integrals. I t  is assumed 
that a one-dimensional problem with potential V(x) has an exact solution with energy 
levels E ,  and wavefunctions qA. In order to perform the separation of variables, a time 
transformation is performed back and forth in the path integral which allows one to insert 
the path integral solution corresponding to the potential V(x). Furthermore, I illustrate 
the method by discussing some specific potefitial problems on the Poincar6 upper half-plane. 
The first one is V,(x, y )  = y2[  V(x) + ( m / 2 ) w 2 y 2 ] ,  whereas the second is given by V2(x ,  y )  = 
y 2 (  V(x) + cu/Zmy), which I call oscillator-like and Coulomb-like, respectively. V ( x j  is an 
arbitrary one-dimensional potential. The various features of bound and continuous states 
are discussed. We find f s r  V, that if bound states are to exist the energy spectrum of the 
one-dimensional problem, corresponding to V ( x ) ,  must have at least one negative energy 
level; for V, the existence of bound states is determined by the sign of a, i.e. a < 0 is required. 

1. Introduction 

In this paper I develop a technique for separating variables in path integrals. For 
convenience I assume that a quantum mechanical potential problem V(x) has an exact 
solution with energy levels EA and wavefunctions qA. The level parameter A may 
be discrete or continuous. By performing a time transformation in a path integral, 
the potential problem V(x) is separated and its path integral solution can be in- 
serted. Performing a second time transformation, which is in fact the inverse of the 
first, the energy Eh then appears as an additional potential term in the remaining path 
integrations. 

The motivation for developing such a technique emerges from the observation that 
many recent path integral calculations for multidimensional problems can be sig- 
nificantly simplified if a separation formula is available. Let us note, for example, the 
papers of Carpio-Bernido et a1 [ l ]  for axial symmetric problems, Chetouani er a1 [2] 
for the Dyon, as well as the study of free motion on hyperbolic geometry [3 ,4]  (this 
short enumeration is far from being complete!). 

In order to illustrate the separation technique I discuss the path integral formulations 
for two classes of potentials on the Poincari upper half-plane U. The Poincari upper 
half-plane U is defined as 

(1) U := {(x, y)l y > 0, x E 58) 
endowed with the hyperbolic line element ds 

dx2 + dy2 
ds2 = gab dq" dqb  = 

Y 2  ' 
(2) 
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This model for a non-Euclidean geometry has recently become important in the theory 
of strings, where determinants of Laplacians on bounded domains on U arise in the 
multiloop perturbation expansion [5-81 and in the theory of quantum chaos in the 
connection with periodic orbit theory [9- 121. 

However, a study of the quantum mechanical properties on a curved space has its 
own legitimations, especially in a path integral formulation, where the motivation lies 
in the attempt to build up quantum mechanics 'from the point of view of fluctuating 
paths' [13]. There are already studies of potential problems on spaces of constant- 
positive and negative-curvature, Let us note the Kepler problem in a space of constant 
positive [14] and negative [15, 161 curvature. The free motion on U without [4, 121 
and with magnetic field [17] has also been studied. 

The first potential to be investigated is 

V,(X, y )  = y 2  V ( x )  +- w2y* 
( 2  " >  (3) 

which I call oscillator-like. The specific shape of V ( x )  is left as general as possible. 
The second potential, which I call Coulomb-like, is 

We find that in order that bound states can exist, in the former potential V ( x )  < 0, 
whereas in the latter CY < O  is required. Of course, these two potential problems are 
instructive in their own right in order to gain some insight into the features of hyperbolic 
geometry. 

The further content of this paper will be as follows. 
In the next section the technique of separation of variables in path integrals is 

developed. In the third section the oscillator-like potential will be discussed and in 
the fourth the Coulomb-like potential. The technique of separation of variables is, of 
course, applied. The corresponding path integrals are exactly evaluated and the 
wavefunctions and the energy spectra are explicitly stated. Whereas in the case of the 
oscillator-like potential my discussion will be more detailed, including a discussion of 
its connection to related problems, it is sufficient in the case of the Coulomb-like 
potential to proceed quite straightforwardly. 

Section 5 contains a summary. In appendix 1 the orthonormality of the wavefunc- 
tions of the two potential problems is shown and in appendix 2 a dispersion relation 
involving Bessel functions is proven. 

2. Formulation of the path integral and separation of variables 

Before going into the analysis of the two potential problems and the separation of 
variables, let us sketch the formulation of path integrals on curved manifolds in general 
[ 18-27] and on the Poincark upper half-plane in particular. Let us consider the generic 
case, where the classical Lagrangian is given by 

with the metric tensor g a b ,  the line element ds2 = qabdqadqb and a potential W ( q ) .  The 
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quantum Hamiltonian has the form 

where A L B  is the Laplace-Beltrami operator, g = det(gab), gab  = (gab) - ' ,  and H, v and 
q denote D-dimensional coordinates. One considers momentum operators 

which are Hermitian with respect to the scalar product 

(fi,f*) = 5 f idq f l* (q ) f2 (q ) .  

The crucial point in the construction of the path integral is the ordering prescription 
one should use in the Hamiltonian. One well known ordering rule is the Weyl ordering, 
but I prefer an ordering prescription I called product ordering as used, for example, 
in [ 2 8 ]  and more systematically developed in [ 2 9 ] .  Here it is assumed that gab can be 
written as gab = ha,hCb, then 

( 9 )  
1 

2m 

with the well defined quantum potential 

H = - h "papbh cb + W (  q ) + A W (  4) 

h2  
8m 

hW=-  [ g a b r a r b +  2 ( g a b r b ) , a  -t gab,ab+2hachbc ,ab  - hac,b - hac,ahbc.bhbc,a].  

The resulting D-dimensional path integral has the form 

11 - &W(q(")-  E A  W(q"') 

Here q"' = q( t ' +  E j ) ,  E = ( t " -  f')/ N = T /  N, Aq"' = q" ' -  q"-" in the limit N + 00. If 
not noted otherwise, every path integral in this paper must be interpreted in terms of 
(11). For gab = f 2 8 a b ,  A W turns out to be quite simple 

For the Poincart upper half-plane we obtain for the momentum operators 

h a  
p * = - -  i ax 

which are Hermitian with respect to the scalar product on U: 

(13) 
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Functions f~ t2( U )  must satisfy the boundary conditions f+ 0 for y + 0. The Hamil- 
tonian on U in the product ordering prescription is 

with A W = 0 [cf equation (12)!]. V(x, y )  denotes some potential on the PoincarC upper 
half-plane, e.g. the potentials of (3) and (4). Thus we can write down the path integral 
on U in the ‘product-form’ definition, yielding 
K ( x ” ,  x’, y”, y’; T) 

For solving path integrals several techniques must be applied. In particular I want to 
study how to separate variables in path integrals. Let us assume that the potential 
problem V(x) has an exact solution according to 

Here dE, denotes a Lebesque-Stieljes integral including discrete as well as continuous 
states. Now we consider the path integral 
K(z”,  z’, x”, x’; T )  

Here (2, x)  = (z,, xk) ( i  = 1 , .  . . , d ‘ ;  k = 1 , .  . . , d, d ’ i -  d = D )  denote a D-dimensional 
coordinate system, g, and f the corresponding metric terms, and A W the quantum 
potential of (10). For simplicity I assume that the metric tensor gab involved has only 
diagonal elements, i.e. gab = diag[g:(z), g:(z), . . . , g$(z),f2(z), . . . , f2(z)].  Of course, 
det(gab) = f 2 d l - I ~ ~ l  gf=f2dG(z) .  The indices i and k will be omitted in the following. 
We perform the time transformation 

‘ d a  
s=[ s ” = s ( t ” ) ,  s ( t ’ ) = O  !,f ’ [z (41  

where the lattice interpretation is ~/[f(z(’-”)f(z(’’)] = S(”= S.  Of course, we identify 
z( t )  = Z[S( t ) ]  and x(  t )  = x[s( t ) ] .  According to Kleinert [30] the transformation for- 
mulae for a pure time transformation are now given by 

1 
K ( z”, z‘, x”, x’; T )  = - J d E  e-;E7/hG(z”, z’,”’, x’; E )  (20) 2Tlh 

G(z”, z‘, x”, x’; E)  = i [ f ( ~ ’ ) f ( z ” ) ] ’ - ~ / ~  ds” Z?(zf’, z’, x”, x’; s”) (21) Ip 
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where the transformed path integral k (  s”) is given by 
k ( z ” ,  zf ,  X I r ,  x i ;  s”) 

- f ’ ( z ) (  W(z)+A W(z) )+ f ’ ( z )E  d s  1 1  
= j dE, exp(- iEAs”/h)9~(x’ )9 , (x“) lZ(z” ,  z‘; s”) 

with the remaining path integration 

z’-f2(z)( W ( z ) + A W ( z ) ) + f ’ ( z ) E  

Of course, in the path integrals (22), (23) the same lattice formulation is assumed as 
in the path integral (18 ) .  Note the difference in comparison with a combined spacetime 
transformation [13, 21, 31-33] where a factor [ f ( z ’ ) f (~” ) ]~ ’ ’  would appear instead. It 
is also seen that for D = 2 the prefactor is identically ‘one’. We perform a second time 
transformation in k (s”) effectively reversing the first: 

(24) a = i f f 2 [ z ( u ) ]  dw a” = y ”  

with the transformation on the lattice interpreted as a”’ = G‘”f(z‘’-”)f( z”’). Therefore 
we obtain the transformation formulae . r x  

A I 
K (z”, z’;  s”) = 7 J dE’exp( - iE’ s” /h )&(z” ,  z ’ ;  E ’ )  

2Tlh -x  

with the transformed path integral given by 

Plugging all the relevant formulae into (20) yields 
K ( zfr, z‘, x”, x’; T )  

= [ f ( z ’ )  f (z”) ] -*’~  dEA ? P ~ ( x ‘ ) ~ A ( x ‘ ’ )  
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The d u ”  d E  integration produces just U“= T, whereas the d E ’  ds” integration can be 
evaluated by giving EA + E a small negative imaginary part and applying the residuum 
theorem, yielding EA = -E’  (for a similar discussion see, e.g., Chetouani and Hammann 
[34]). Therefore we arrive finally at the identity 

K(z”,  z’, x”, x’; T )  

= [ f ( Z ’ ) f ( Z ” ) ] - d / 2  J” dEA *?(X’)*A(X’’) s Z ( f )  I 
Note that this result can be given a short-hand interpretation by inserting 

( 27ri8‘”fi )d’2 exp[ f ($j A2xiJ’ - 8(I’V(xiJ))  

= I dEAw e ~ p ( - i E ~ i , ~ ~ ‘ ~ ) / f i ) ~ ~ , , ~ ( x ~ ’ - ’ ) ) ~ ~ ~ , , ( x ( ’ ) )  (30) 

with 8”) = ~/[ f (z”-”) f (z ‘”) ]  for all j and applying the orthonormality of the *A in 
each j th  path integration. Equation (30) describes therefore a ‘short-cut’ to establishing 
(29) instead of performing a time transformation back and forth. 

3. The oscillator-like potential 

According to the introduction, the path integral formulation for the potential 

on the PoincarC upper half-plane is given by 

K(x”, x’, y”, y‘; T) 

I apply (29) for the x-dependent potential in order to separate variables, and obtain 

K(X”, X’,”’, y’; T ) =  dEA Y:(x’)*A(x’’)KA(y”, y ’ ;  T )  (33) 5 
with the path integral KA( T )  given by 

This path integral can now be evaluated by two different methods: 
(i)  by a time transformation 
(ii) by a coordinate transformation. 



Separation of variables in path integrals 489 1 

3.1. The time transformation 

We perform the transformation 

s " = s ( t " ) ,  s ( t ' ) = O  (35) 

so that ~ y ( ' - ' ) y ( ~ )  = 6") 
we have the transformation formulae 

6. Furthermore, we identify y (  t )  = y [  t (s)]. According to [30] 

GA(y" ,  y ' ;  E )  = i kA(y", y ' ;  s") exp(-is"E,/h) ds" (37) loX 
where the transformed path integral kA is given by (note that due to the time transforma- 
tion the factor has been cancelled) 

with 6 = s"/ N and v = Ja - 2mE/  h2 .  Here the well known path integral identity [35-371 

for radial path integrals has been applied with the functional measure p,,[y2] 

hi 

in order to guarantee a well defined short-time kernel [21, 37, 381. I,, describes a 
modified Bessel function. The path integral (34) has thus been transformed into the 
path integral of the radial harmonic oscillator. The sign of the square root must be 
chosen in such a way that 

(i)  for E < h 2 / 8 m :  v = + J : - 2 m E /  h2 to guarantee the vanishing of the short-time 
kernel k,, for Y ( ~ - ' ) ,  y ( I ) +  0 in a owerlike behaviour; 

is the correct (retarded) one. Here one usually inserts E + E + i s  (E > 0) whenever 
necessary, in order to deal with well defined formulae. 

(ii) f o r E  > h 2 / 8 m :  U =  -i * 2 m E l h  --toguaranteethattheGreenfunction G , ( E )  
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We now obtain for G A ( E ) :  

mw\ly‘y“ 5: ds” I , (  mwy’y” ) 
G ~ ( Y ” , Y ‘ ;  E ) =  h sin ws” ih  sin wv”  

(y12 + y’”) cot u s ” -  

Performing the transformation U = iws”, a Wick rotation and the second transformation 
sinh U = l /sinh U, we obtain finally ( y ”  3 y ’ )  

where use has been made of the integral representation [39, p 7291 

loE (coth f)*’ exp( -2 t cosh v 12@( tm sinh U )  dv a + b  ) 

Here the W,,”(Z) and M,,y(z) are Whittaker functions. Thus the complete Green 
function for the oscillator-like potential on the PoincarC upper half-plane is given by 

G(x”, x’, y”, y ’ ;  E )  

Poles occur in G A ( E )  for 

n E N o .  EA 1 + Y+-= -2n 
hw (45) 

We have to distinguish between two cases: 

bound state solutions with E < h 2 / 8 m  at all; 
( i)  EA > 0: for positive v the right-hand side is always positive and (45) allows no 

( i i )  EA <0:  bound states with E < h 2 / 8 m  exist and energy levels are given by 

with n = 0 , 1 , 2 , .  . . , N M  <IEAl /2hw - t  
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For the case (ii) the bound-state wavefunctions can be calculated with the help of 
the Hille-Hardy formula [39, p 10381: 

1 - t  I - t  1 - t  

where the L,(A) are Laguerre polynomials. Inserting (47) into (41) and taking the 
residuum at each nth level yields the bound state contribution of the Green function 
as follows: 

N v  'Pn(Y'"(Y'') 
(x", x', y", y'; E )  = h dEA ' P ~ ( X ' ) " A ( X " )  1 I ,,=O E,-E 

G ( b o u n d )  

with E, as in (46) and the wavefunctions 

' A ' " ( x ' y ) = (  r ( \ E A l / h o - n )  

1EA1/2hw-n - 1 / 2  2n!(lEA(/hw -2n - l ) y  y y2> 

To calculate the continuous spectrum we insert into the Green function G ( E )  the 
dispersion formula 

instead of performing the s" integration by means of (43). This relation is discussed 
in appendix 2. We obtain 

G(co"')(x", x', y", y'; E )  

- -!E@! J" dEA 'Pf(x')"A(x'') 
i h r  

mo pLiP( ( m u /  h)y'y'' sinh U )  dp > I-: ( p 2 + f ) - 2 m E / h 2  
(y" + y"*) cosh U 

x lox dv( coth$EA"w exp( 2h (y"+y"2) cosh U 

/ mu x K i P \ y  y'y" sinh U 
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Here use has been made of the integral representation [39, p 7291 

lom (coth :)’” exp( -a+b 2 t cosh U K,(  t- sinh U )  du 

The representation (51) shows clearly that G(E) has a cut on the positive real axis in 
the complex energy plane with a branch point at E = h2/8m.  From (51) we immediately 
read off the energy spectrum and the normalized wavefunctions 

m u  1 /2  

* p , A ( x , ~ ) = ( ~ p s i n ~  m u  2 7 r y  ”> r[i( l+ip+E*)]  hw w - ~ * / 2 ~ ~ , i p / 2 ( ~ y 2 ) * A ( x ) ,  (54) 

The orthonormality of the wavefunctions (49) and (54) can be shown by the two 
relations for the polynomials 

and the scattering states 

Jpp‘ sinh xp sinh xp‘ r[$(l + i p +  b)]r[$(i  - ip’+b)l  
4 T 2  

loD.$ wb,ip,Z(u)Wb,ip’lZ(u)= a ( p - p ’ ) *  ( 5 6 )  

These relations are discussed in appendix 1. 

the Poincari upper half-plane 
Therefore we obtain the path integral solution for an oscillator-like potential on 

K(X”, x‘, y”, y’; T )  

= I d&( $ exp(-iE,T/h)q?,,(x‘, y’)*A,n(”’, y”)  
n = O  

with wavefunctions (49) and (54) and energy spectrum (46) and (53), respectively. 

3.2. The coordinate transformation 

For the second approach to calculating the path integral (34), I perform the coordinate 
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transformations q = In y and 2q + 4 
KA(q" ,  q ' ;  T )  = K,(eq", eq'; T )  

9: 

Here M = m/4 and fi = 2w. The additional factor exp(-ihT/8m) is, of course, due to 
the nonlinear transformation and can be derived by the identity 

where use has been made of the identity A4q(J)= 3(i6h/m)* (e.g. [18,20,25]) and I 
have used the symbol =-following DeWitt [18]-to denote 'equivalence as far as 
use in the path integral is concerned'. This path integral is now the path integral for 
the Morse potential, which is actually calculated by the radial path integral identity 
(40). The path integral solution for the Morse potential ( M )  has the form [17,28,40,41] 
(k>O) 1 O q ( t ) e x p { ~ { t ~ [ ~ q 2 - m ( e 2 q - 2 L e q ) ]  h2k2 d t )  

hk 
NM 

= C exp(-i T E ' , ~ ' /  )T',')(q')T',MJ(x'') 
n = O  

+ lom dp exp(-iEpT/h)TbM"(x')T~M'(x'') 

where the bound-state wavefunctions and the energy spectrum are given by 

For the continuous spectrum one has 

with E, = h2p2/2m. Inserting this solution, performing the substitution p + p/2 in the 
continuous spectrum, the results of (48), (51) are easily reproduced. 

Let us make some remarks concerning the condition EA < h2/8m in order that 
bound states can exist. We can look at this feature in two different ways. 
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(i)  The bound state condition ( 4 5 )  quite clearly allows no bound states for E, > 
h 2 / 8 m .  Calculating wavefunctions with the help of the Hille-Hardy formula neverthe- 
less yields 

-i lEA/ h w + 2 n + l )  

( 2 n ! (  E,/ hw + 2 n  + l ) y  
r[ n + 1 - i( E,  / hw + 2 n + 2 ) ]  

W A J ( X ,  y )  = 

which are not normalizable to unity with respect to the scalar product (14). This feature 
is well known and is due to the singularity of the potential V = A /  r2 in a path integral 
like ( 3 8 ) .  For A < - h 2 / 8 m  the potential is too strong and a particle moving in the 
field of such a potential with E < 0 ‘falls into the centre’ [ 4 2 ] .  However, as Case [ 4 3 ]  
has pointed out, it is possible to construct ‘quasi-bound’ levels with energies E,, + -m 
corresponding to a particle which drops stepwise into the coordinate origin. 

(ii) On the other hand, we see quite clearly the condition ( 4 5 )  arising from the 
path integral ( 5 8 ) .  For EA > 0 the Morse potential has no potential trough at all which 
could be able to produce bound states. Only for E, < 0 such a potential trough exists 
and thus bound states are allowed. 

4. The Coulomb-like potential 

In this section we study the quantum motion of a particle with mass m corresponding 
to the classical Lagrangian 

where a is a positive or negative constant. To formulate the path integral on U, I use 
the product form 

K ( x ” ,  x ‘ ,  y ” ,  y ‘ ;  T )  

I proceed similarly to the previous section and separate variables according to ( 2 9 ) ,  
yielding 

K ( X ” ,  X ’ ,  y ” ,  y ’ ;  T )  = dEA ‘ I ’~(X’) ’PA(X’ ’ )KA(~‘ ’ ,  y ’ ;  T )  ( 6 7 )  I 
with the path integral K,( T )  given by 

Again we can calculate this path integral by two different methods 
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(i) The same time transformation as in section 2, yielding effectively the path 

(ii) The coordinate transformation q = In y.  
integral for the Coulomb potential. 

In the first case we obtain, similar to (38), 

and the path integral solutions for the Coulomb potential [ 13,33,44-471 can be applied. 
As for the Morse potential, the path integral calculation for the Coulomb potential is 
based on the identity (39). This justifies the notion 'Coulomb-like'. We obtain for the 
second method again the path integral for the Morse potential with V ( q ) =  
( h2k2/2m)[e2q + a eq/(  f ~ k ) ~ ]  and h2k2/2m = E, : 

k, (q l! ,  q' ;  T )  = K ,  (eq", eq'; T )  

Using the solution for the Morse potential yields 

K (x", x', y", y ' ;  T )  

ra ,  \ 

The wavefunctions and energy spectrum are given for the continuous states 

h2 
2m 

Ep =- (p2+$).  

For the bound states we obtain similarly ( n  =0,  1 , .  , . , N M  <~( ia l / ( f ik)2-1) )  

(72) 

(73) 

Bound states can only exist if a < 0 and EA > 0. Of course, both alternatives (i) and 
(ii)  lead to the same result and it remains a matter of taste which one is actually chosen. 
The connection between the path integrals (34) and (69) shows once again the close 
connection between the solutions of the Morse potential, Coulomb potential and the 
radial harmonic oscillator, which is, of course, due to the fact that the corresponding 
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Schrodinger equations can be reduced to the differential equation for the confluent 
hypergeometric function. 

5. Summary 

In this paper I have discussed how to separate variables in path integrals. We perform 
in a given path integral a time transformation in such a way that a separated path 
integral emerges so that we could insert its solution. Performing a second time transfor- 
mation which was the reverse of the former, the original problem was reduced by the 
separated variables. However, the energy of the separated problem now occurs as a 
potential term in the remaining path integrations. 

In addition I have illustrated the method for specific potential problems on the 
PoincarC upper half-plane, which I have called oscillator-like and Coulomb-like. 
Equivalently, both problems could also be formulated in terms of the Morse potential 
path integral. For the oscillator-like potential we found a sensitive dependence on the 
corresponding one-dimensional potential problem V (  x ) ,  which has been included and 
left open in its specific shape in order to be as general as possible. Bound state levels 
can only exist if the potential V ( x )  has negative energy levels. As is known, the 
Hamiltonian on U with a positive potential V ( x ,  y )  has as lower bound 

This can be seen if one considers, for example, the classical Hamiltonian corresponding 
to the Lagrangian L and inserts the Heisenberg uncertainty relations xp, 2 h / 2  and 
yp,, h / 2 .  Thus a negative term is needed to lower the energy of the Hamiltonian 
below the critical value Ho. 

The same job of changing the lower bound of H is done in the case of the 
Coulomb-like potential by the Coulomb term itself, so that a < 0 is required. Here in 
turn, Eh > 0, so that just the opposite of the previous case is needed (otherwise k 2  < 0 
and therefore k is purely imaginary). Of course, all the results can also be achieved 
by solving the corresponding Schrodinger equations, as is easily checked. 

Most clearly these features appear after the coordinate transformations in the two 
cases, where both problems are transformed into Morse potentials and the effective 
shape of the trough of the Morse potential determines whether there are bound states 
or not. 

The two potential problems on the Poincari upper half-plane have been studied 
on the one hand to illustrate the method of separating variables in path integrals, and 
on the other to gain some insight into the features of hyperbolic geometry. Of course, 
they are simple examples. The power of the separation technique can be even better 
illustrated by looking at some recent path integrations by, e.g., Carpio-Bernido et a1 
[l], where potentials with axial symmetry are considered, as well as Chetouani et al 
[2] in a path integral treatment for the Dyon. These authors perform quite reasonable 
and formidable transformations to tackle these problems and actually separate variables 
(e.g. the angular from the radial path integration). Here the separation formula (29) 
comes into play, making these problems in its very evaluation quite easy. 

Another less simple example for the application of the separation formula (29) is 
the path integration on the SU( n - U, v )  ( n  > U, n 2 3)  group manifold. Formulated in 
an appropriate polar coordinate system, this problem gives rise to at first sight rather 
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involved angular path integrations, which, however, can be successively performed by 
applying formula (29) in a straightforward way [48]. 
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Appendix 1. Discussion of the Orthonormality of the Wavefunctions 

I only consider the wavefunctions for the continuous spectrum of the oscillator-like 
potential explicitly. The orthonormality of the corresponding bound-state and con- 
tinuous wavefunctions of the Coulomb-like potential is treated similarly. Inserting the 
wavefunctions (54) into the scalar product (14) yields 

I-(( 1 + ip - b) /2) r ( (  1 - ip’ - b)/2) 
4T2 

J p p ’  sinh .irp sinh 7 ~ p ’  = 6 A , A ’  

( A l . l )  

where I have changed variables ( m u / h ) y 2 +  U and abbreviated b = -EA/2hw. 6,%,. is 
shorthand for the orthonormality of the functions TA, whether they are discrete or 
continuous wavefunctions. The remaining integral can be evaluated with the help of 
[39, p 8581: 

Jom X P - ’  K,,(x) w A , ” ( x )  dx 

- r(i +CL + V+p)r(i  - CL + V + p ) r ( - 2 V )  - 
r ({-A-V)r( i -K+V+p) 

x3F2(1+p+ V + p ,  1-/..L+ V + p , i - A  -k V ;  1+2V,i-K+ V + p ;  1) 

+ r(i + - V + p ) r ( i  -CL - V +  p)r(2V) 
r(1-A + V ) r ( t - K  - V + p )  

3 x 3 F 2 (  1 + CL - b’+ p, 1 -/l- V +  p, - 2’; 1 -2V, Z - K  - Y + p ;  1). 
(Al.2) 

Setting p = E - 1 ( E  << l ) ,  K = A = 6, p = ip and v = ip’, I obtain 

(A1.3) 
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In the above calculation I have used the fact that in the limit E + 0 the function 3F2 
changes into 2F1,  which can be evaluated at z = 1 with the help of [39, p 10421 

(A1.4) 

for c = 1 +ip‘, a = E + (i/2)( p +p’)  and b = E + (i/2)( p’-p).  Combining (A1.3) and 
(A1.4) shows finally the orthonormality relation (56). Due to the relation ( 5 5 )  the 
orthonormality of the wavefunctions (49) is shown similarly. 

Appendix 2. Proof of the dispersion reiation (50) 

We consider the complex contour integral (let E, A > 0 )  

(A2.1) 

where its value is given by the residuum theorem. A slightly different discussion of 
this integral was already given in [17]. For the poles in the complex plane we choose 
the convention E + E + 

I take for C the closed contour 

that the poles of the integrand of the integral 
z , =  -J2mE/h2-$-iS ( O <  S =a(&)<< 1). (A2.1) are located at z, 

(A2.2) 

and considcr the limit R + 00. If it can be shown that the integral over the semicircle 
vanishes; I obtain 

(A2.3) 

which is the integral we need. For the integral over the semicircle we obtain for R finite 

(A2.4) 

With the asymptotic expansion of the modified Bessel function [49, p 1221 for high order 
2 -1 /4 

Iy( vz) 2: (’+’) e x p ( v m + v l n  ) v+co 
JT.irv 1 t m  

(A2.5) 

we see that the main contribution comes from the factor e v i n z .  Inserting the relevant 
terms, I get 

x exp[-R sin 4( ln  R -In A )  t 10R]+ 0 4 E (0 ,  T), R + 00. (A2.6) 

Thus the integral (A2.4) vanishes in the limit R + CO and therefore (A2.3) is proven. 
Note that if the + sign is used in I,,, one has to replace E + E -is (0 < E << l ) ,  which 
leads to an advanced Green function. 
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